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The response of regular arrays of two-dimensional Helmholtz resonators mounted in 
a rigid baffle and subject to external excitation by a plane acoustic wave is studied. 
The inviscid linearized problem is solved by the matched-asymptotic-expansion 
technique in the low-frequency limit, i.e. when the characteristic neck dimension is 
small compared with the acoustic wavelength. Different spacings between resonators, 
from comparable with down to much smaller than the wavelength, as well as variable 
neck length and different cavity shapes, are studied without assumptions about the 
velocity distribution in the neck. The results yield predictions of resonance for the 
different geometries and compare favourably with measurements. Besides showing 
analytically the dependence, of, say, the acoustic impedance on all geometric 
parameters and forcing frequency, the analysis also reveals that for deep narrow 
cavities the basic Helmholtz model with uniform cavity pressure is inappropriate at 
resonance. 

1. Introduction 
In  a fist paper (Monkewitz & Nguyen-Vo 1985, subsequently referred to as [I]) 

single two- and three-dimensional resonators have been studied using singular 
perturbation techniques. The limit of long acoustic wavelength compared with the 
neck dimension was considered and the resonator cavity was scaled so as to keep the 
system tuned. For the cavity shapes considered in [I] with only one lengthscale, 
typified by semicylindrical and hemispherical cavities, it  was shown that the basic 
Helmholtz spring-mass model applies to leading order, but that, for all practical 
purposes, improvements to the model are essential. By applying a rigorous matching 
procedure, any assumption on the velocity or pressure distribution in the neck to 
obtain the added neck length was avoided. 

In  this paper the analysis is extended to arrays of two-dimensional resonators 
mounted at regular intervals in an infinite rigid baffle. As the long-wavelength limit 
is considered, the problem can be broken up into subproblems associated with 
different regions: the outside wavefield, the neck region where the velocity field is 
essentially the same as for an incompressible fluid, and the cavity region. In  $2 widely 
spaced resonators are considered, meaning that the distance between neighbouring 
resonators is taken to be of the same order as the wavelength. The neck and cavity 
geometry is taken directly from [I] (cf. figure 1). Therefore the solutions pertaining 
to these regions that were developed in [I] can be used and are referenced throughout 
the text with equation numbers preceded by I, e.g. (I 1.1). Only the outside wavefield 
has to be modified to account for the interference between the resonators of the array. 
It is demonstrated that, in addition to the Helmholtz modes, the array can also be 
operated in an interference mode. 
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In  $3 small spacings between resonators are considered. In order to have a 
physically realizable arrangement, the small spacing entails narrow cavities which 
have to be correspondingly deep for a resonance condition. These cavities with two 
lengthscales, as opposed to the one-lengthscale semicylindrical cavity, considerably 
complicate the analysis, as they require ‘transition regions’ between the neck and 
the outside wavefield as well as the cavity, where the waves, initially spreading 
radially from the orifice, are bent into plane waves. Apart from giving an asympto- 
tically correct expression for the acoustic impedance, the calculation in the limit of 
vanishing ratio between neck width and wavelength yields the result that wave 
propagation in a ‘two-lengthscale cavity’ cannot be neglected. In fact it is shown 
that the larger dimension of the cavity approaches a quarter wavelength in the 
aforementioned limit. 

Finally, the results are compared with theoretical and experimental results of Smits 
& Kosten (1951) who considered in the classical way both constant pressure and 
constant velocity a t  the resonator mouth to derive a lower and upper bound for the 
added length. Using a set of unpublished data of B. Walker, it is also shown that, 
say, the measured resonance frequency can be strongly dependent on the method of 
measurement. The present analysis thereby provides a tool to assess a measurement 
procedure and to compare results from different tests. 

2. Widely spaced resonator arrays 
In this section regularly spaced resonator arrays are considered with a spacing of 

the order of the acoustic wavelength. For simplicity the semicylindrical shape of the 
cavities used in [I] is maintained. Such an arrangement is physically realizable as long 
as the spacing is larger than a cavity diameter (cf. figure 1). Wide rectangular cavities, 
such as those considered by Smits & Kosten (1951), could be treated as well. It has 
to be remembered, though, that in order to obtain a rigorous asymptotic solution 
(in the limit of long wavelength) the expansions of the cavity solution near the neck 
for small r and the exterior Helmholtz solution for small r are required. Therefore, 
the approach of Smits & Kosten, to represent these solutions as Fourier series in y, 
is not practical, as it does not appear possible to determine their small-r behaviour 
analytically. Instead, the exterior solution is obtained directly in $3 by summing over 
an array of line sources. For rectangular cavities the summation would have to be 
extended over a two-dimensional source array with a period equal to the resonator 
spacing parallel to the baffle and a period equal to twice the cavity depth normal 
to the baffle. This poses no fundamental difficulty, but is somewhat awkward as, 
depending on the particular cavity dimension, the restrictions imposed on the use 
of the summation theorem for Bessel functions (see Gradshteyn & Ryzhik 1965, 
58.53) will lead to different expressions for the solution. 

In the following, the neck and cavity solutions derived in [I] are used without 
modification and matched to a new Helmholtz solution corresponding to an array 
of line sources. 

2.1. The Helmholtz region 
As in [I], all lengths in this region are made non-dimensional with the wavenumber 
A = o/co. For simplicity only normal incidence of the forcing plane wave is considered 
here. It is therefore described, together with its reflection from the baffle at f = 6, 
where f = Ax, by 

9 = jji cos [ f a ] .  (2.1) 
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FIGURE 1. The geometry of the widely spaced arrays (see also figure 1 of [I]). 

In contrast with the single resonator, the waves radiated from one slit are no longer 
simple cylindrical waves, but form a pattern, periodic in fj, with period 21, the slit 
spacing. In  the following it is assumed that 1 is of order unity, i.e. slit spacings 
comparable to the acoustic wavelength are considered. The appropriate solution of 
the Helmholtz equation 

corresponding to an array of parallel line sources with spacing 21 is given below. Owing 
to the assumed normal incidence of the forcing all sources are thereby in phase. As 
in [I], higher singularities such as dipoles and quadrupoles are not considered because 
they do not contribute to the flow rate through the slits and to the impedance up 
to the order in E considered here. The required solution is 

$"+$ = 0 (2.2) 

+OD 

For the matching of this solution to the neck solution developed in [I], the expansion 
of (2.3) for small radii 8, is required. Using expressions given in Gradshteyn & Ryzhik 
(1965, $8.52), and restricting attention to the case where the spacing 26 is smaller 
than the acoustic wavelength, i.e. smaller than the first resonant spacing, one obtains 

for 

The lowest resonant spacing 1 = x corresponds to an inverse square-root singularity 
of the function A.  For spacings larger than that, the expression for A has to be 
modified according to results in Gradshteyn & Ryzhik (1965), which poses no 
particular difficulty. 

2.2. Matching and results 

The solution in the neck region and in the semi-cylindrical cavity have already been 
developed in [I]. The only modification arises from the Helmholtz solution derived 
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above. With the intermediate scaling x* = hs-" the expansion (12.40) becomes 

V = R2p,(AR), \ 
w =1, 

1" xb  
-= D--+ln2-y, 
a 2a 

a J 

now 1 
$, X pi + i io(e) {a 1nT-h rz + ln x + d (:) + i + 0 ( E~ In t)} . (2.5) 

With this and the unchanged expansion (12.41) one obtains the following relations 
between amplitudes : 

A, = A,, I 
B , = $ , + A ,  { In-+ln-+d : 9 (3 - +D+- sl 

The quantity D appearing here arose in [I], to which the reader is referred. These 
relations, which replace (I2.42), combined with (12.45) immediately yield 

where y = 0.5772 ... is the Euler constant. In (2.7), R i s  the rescaled cavity radius 
and po the volume correction factor found in [I] which accounts for the non-constant 
cavity pressure. Using the result (12.25) for the average of the $-velocity over a 
resonator mouth area, the average over the entire baffle is obtained as 

E ix 
8 2E 

= - -A, 

with the area ratio factor €13. The impedance based on the incident pressure jji and 
the average normal velocity --U on the baffle given by (2.8) then becomes 

The comparison with the basic spring-mass model 

(2.10) 
i s  S 
AV 2a 

zi = --iA-[2b+Z']+L&?, 

(2.11) 

The added length 1' above is broken up into the single-resonator added length, a 
term which.depends on the neck length, and a further term representing the 
interference between resonators. For approximate expressions for 1"la the reader is 
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FIGURE 2. The contribution Y' /a  to the added length dependent on the resonator spacing 8 :  -, 
Y' /a  = In(k's/2n)+y+A(r&s/n), with A defined by (2.4); ---, Y / a  x In(ls/2r)+y+f(r&~/n)~5(3) 
for da/n+O; -.-, l"'/a % [l - ( k ' ~ / n ) ~ ] " -  1 for h / n +  1. 

referred to (12.54) and (12.55) and figure 5 of [I]. The following conclusions can now 
be drawn from these results. 

(a)  The effective volume or the stiffness of the system is the same as for a single 
resonator, and the reader is referred to the discussion in $2.4 of [I]. 

(b) At  this order (neglecting terms of order s2) the interference between resonators 
of the array manifests itself in the added length 21"/~ exclusively. It has to be 
reiterated here that in the derivation the spacing 2s has been assumed to be of the 
order of, but less than, a wavelength; taking the limit S+OO to compare with the 
single-resonator results is therefore not possible. 

The third term of Z'/a in (2.11), namely the interference term Y / u ,  shows a 
peculiar behaviour displayed in figure 2 : for small spacings it is negative, i.e. the added 
length is reduced, while at a particular 4's = 0.7054~ all interference effects cancel, 
and for /S+A the added length becomes infinite. The behaviour at small s can be 
understood by formally considering a spacing of the order of the neck width a ,  which 
is not realizable in practice because of the cavity geometry: i t  is immediately clear 
from (2.9) that the leading-order contribution ( 4 / ~ )  In (l/s) to the added length is 
cut in half. This means that for small spacing the exterior wavefield does not 
contribute to the added length, which is not surprising as it consists of almost-plane 
waves all the way to the hydrodynamic near field of the resonator necks. 

On the other hand, when 2s approaches a wavelength, or 8+n, the added length 
becomes infinite, and with it the impedance. The reason for this behaviour is the 
approach of an interference resonance where the energy radiated by the resonators 
is no longer propagated away from the baffle, but 'piled up ' in a transverse standing 
wave parallel to the baffle. This is most easily seen from a representation of the 
Helmholtz solution (2.3) in terms of a Fourier series in @, as given by Smits & Kosten 
(1951) in their $4 (for $ + A  their k, becomes zero). For non-normal incidence of the 
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forcing plane wave the situation becomes more complicated, however, because the 
resonators no longer operate in phase (cf. discussion at the end of this section). 

(c) The resistance is identical with the resistance experienced by a piston radiating 
plane waves into a duct which can be thought of as being formed by the symmetry 
planes on both sides of each resonator. 

The resonance condition for the lowest Helmholtz mode derived in [I], (I2.56), is 
now modified by interference to 

(2.12) 

As long as the interference is moderate or, in other words, the function A is of order 
unity, the scaling based on the balance between spring term and added-mass term 
associated with the cylindrical wavefield is appropriate, and will keep the system 
at resonance for e+O. If d approaches x, on the other hand, the resonant balance 
has to involve the spring term and A .  Near d = x the function A can be approxi- 
mated by 

A(:) !z (2~)-;+0(1) , \  
(2.13) 

1 s 
7c 

C =  1--4 1. 

If now in (2.9) the function A dominates over the single-resonator added length of 
order In (l/e), the proper resonant scaling becomes 

(2.14) 

This result provides quantitative guidance for designing sound-absorbing panels 
based on the interference resonance. In  this mode the centre frequency is, to leading 
order, determined by the spacing of the resonators, while the sharpness of the 
resonance, which is of order C, is determined by the cavity volume according to (2.14). 
The limitation on c stated in (2.14) implies that the required cavities are much smaller 
than for the usual Helmholtz mode, while the resonance is sharper, which may be 
desirable for special applications. 

It has to be noted, however, that the singularity of the function A depends on the 
angle of incidence of the forcing plane wave, which somewhat limits the possible 
applications of such a design. For oblique incidence at an angle p between the 
wavevector and the baffle normal (cf. I2.5), a phase factor has to be added to the 
Helmholtz solution (2.3) representing an array of line sources: 

x 
for t o+O 

1 +sing)' 

(2.15) 

co 
Ac@(z)  G X {i(n2 - 2nz sin p- z2 cos2 g))d + +(n2 + 2nz sin p- 22 cos2 g ) ) - k -  n-l}. 

Owing to the pdependence of the function A ,  the spacing for the interference mode 
can be generalized to d/x = l / ( l + s i n ~ ) - a  (cf. 2.13). 

n-1 
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FIGURE 3. The geometry of the narrowly spaced arrays. 

3. Closely spaced resonator arrays 
In this section the most commonly used two-dimensional resonator arrays with a 

uniform spacing much smaller than the acoustic wavelength are analysed. In order 
to be physically realizable, the semicylindrical cavity has to be abandoned in favour 
of deep narrow cavities. To simplify matters, the width of the cavity is chosen to be 
the same as the resonator spacing 29, which is a geometry already considered by Smits 
& Kosten (1951) (cf. figure 3). In  order to obtain rigorous results in the limit of very 
long wavelength compared with the slit width, the analysis has to include intermediate 
regions adjacent to the inside and outside of each resonator neck, where the transition 
from cylindrically spreading waves to plane waves further away from the neck takes 
place. 

3.1. The Helmholtz region 
As forcing, a plane wave, normally incident on the baffle, is again considered. 
Therefore the expression (2.1)-can be used unchanged. The wave radiated by the 
resonators will, on the other hand, now also be plane outside the intermediate region 
mentioned above. It is thus described by 

@,, = A,eis. (3.1) 

Periodic distortion (in the @-direction) of this plane wave does not have to be 
considered, as it turns out to be exponentially small (see $3.2). 

3.2. The intermediate region 
In  this subsection the wave equation is solved in the semi-inhite strip z 2 0, I y I < s, 
with vanishing normal velocity on these ‘boundaries ’ except for a source at  the origin. 
A t  this point one can make use of the assumption that the resonator spacing 2s is 
much smaller than the wavelength but still much larger than the neck width 2a. The 
coordinates in this region are thus rescaled according to 

$j=- 2-6 g=-& @ 0 < / 9 < 1 ,  S = O ( l ) .  
I # ’  

6-2 
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This scaling implies that in the limit s+O the ratio of open to total baffle area 
approaches zero like sl-p. However, for situations with fixed neck geometry and slit 
pattern, where the wavelength is increased indefinitely to make e go to zero, this ratio 
has to remain constant. This case requires that the spacing s be scaled in the same 
way as the neck dimensions a and b, and is discussed in $3.4 on results. 

The Helmholtz equation equivalent to (12.10) then becomes 

p p  = -& P .  (3.3) 

In complete analogy to [I], the solution is expanded in powers of s2p and satisfies the 

( 3 . 4 ~ )  following equations : 

'Pn 0 1  = 2,3(n)(g), %I = 0, (3.4b) 

f in  = Pn,o+e2'Pn, I +  *. .> 

ag +*8' 
0 2 P n , o  = 0, z-o 

%I = %I =o.  (3.4c) 
a5 z - o  ag +*8' 

v 2 P n ,  1 = -Pn,  09 

The first index equal to n again indicates the leading behaviour of the solution: 
n = 0,1,2, ... thereby correspond to a source, dipole, quadrupole etc. The leading- 
order hydrodynamic pressure corresponding to line sources at all the slits (n = 0), 
i.e. obeying (3.4b), has the same form as the potential of a row of point vortices, 
and can be taken from Lamb (1945 art. 156). It is given below, together with its 
Fourier-series representation, which is used subsequently : 

( 3 . 5 ~ )  

The large-3 and small-+o expansions are again listed for later use in the matching 
procedure. Proceeding to the solution of the Poisson equation ( 3 . 4 ~ )  for the next-order 
pressure Po, 1, one obtains in the Fourier representation 

22 
J 2 

O0 nnZ+9 v v  

-e-nnz/scos- - B o - ,  (3.6a) 
n=l 2n39 

po, l (Z  = g = 0) = -Ao(-) 9 2f;o R 2 .  
(3.6b) 

The value of Po, at the origin contains the Riemann zeta function of argument three, 
i33) = 1.20206. From the above, the expansion for large Z is just the zeroth Fourier 
coefficient, while for small +o the integration of the approximate form (3.5b) in polar 
coordinates, together with the result (3.6b), yields 
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The above results (3.7) will yield the leading-order correction of the impedance due 
to compressibility in the intermediate region. In  order to include the leading-order 
correction due to the velocity-profile distortion in the neck by interference between 
resonators, the terms proportional to cos28 have to be considered and matched as 
well. 

The quadrupole solution of (3.4b) with n = 2 is simply obtained by taking the 
second x-derivative of the 'source' pressure (3.5). As such a solution is seen to decay 
exponentially away from the baffle, only its expansion near the resonator neck is 
reauired : 

Similarly, the solution behaving like an octupole at small +, is obtained from the 
fourth x-derivative of (3.5), and also contains cos 28 and constant terms, but i t  can 
be shown that this and higher multipole solutions only contribute to higher-order 
corrections to the impedance, which are not considered. 

With this, the required solutions in the intermediate region are complete. It is 
understood that the same solutions can be used on the inside as well, to join the 
neck solution to the plane-wave solution in the narrow cavity. The only modification 
necessary is a redefinition of the h-coordinate to 2 = -(2+6)/8. 

For the neck, the solutions derived in [I] will be used without change. In  addition, 
quadrupole solutions for the neck are derived in the Appendix in order to match the 
cos 28 terms. The only region left to be discussed is therefore the narrow rectangular 
cavity. 

3.3. The narrow cavity 
As seen from the intermediate solution (3.5) describing an array of sources, dis- 
tortions of the plane wave die out exponentially away from the neck. It is therefore 
again sufficient to consider only plane waves in the cavity, of depth H, which is 
considered to be of the order of a wavelength. With the condition of vanishing 
velocity at Z = l?, one readily obtains 

(3.9a) 

cot z 1 
9,(z) = - $-2  , h(l-/3)dln- E = ix - I? .  

The definition of the function 9, and the scaling of h is left for later discussion. It 
is only noted here that for l?+?jx, or in other words E+O while h = O ( l ) ,  the function 
9, approaches unity. 

3.4. Results 
The tedious matching procedure is outlined and partly carried out in detail in the 
Appendix. To determine the impedance of the resonator array, one only needs the 
final result (A 17). Again using (2.8) with the area ratio e/8 = d-P/& the impedance 
based on the normal velocity averaged over the entire panel is obtained as 

Z, =?{(1-/3)1n(;)( 1 xh8,(l?) - 1  
41 

- &-2B - 1+k2 ( 7C ) +O(CP,EI,k-4fi)}+1, (3.10) 
3D2 261 
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with k and D defined by (12.13) and (12.14). The main difference from the previous 
case with the semicircular cavity lies in the spring term, which, after removing all 
the scaling (cf. 3.96), has the simple form also found by Smits & Kosten (1951) and 
Panton & Miller (1975) : 

(3.11) 

The radiation resistance is unchanged and equal to unity (times pa c,,) and the added 
length 1' (see (2.10)) is 

1' s I" 5 ( 3 ) ( A ~ ) ~  
- a = ?{ln-+-+y+ A 2za a 2x2 +- 3D2 - 2s * (3.12) 

For the definition of 1" see (2.11) and also figure 5 of [I]. 
The main results of this analysis are the following. 
(a)  The spring term (3.1 l ) ,  although already derived by other authors cited above, 

needs to be reinterpreted. So far the result (3.11) has been thought to confirm the 
basic Helmholtz model with a cavity of essentially uniform pressure. By expanding 
the cotangent for small argument it can indeed be pressed into the standard form: 

i2s is 
i cotAH x - = - 

AH2s AV'  
(3.13) 

This interpretation turns out to be inconsistent with the long-wavelength assumption 
and the condition that the resonator be tuned. 

The use of the matched-asymptotic-expansion technique involving the limit 
process s+O reveals that in this limit the length of the narrow cavity has to approach 
a quarter wavelength for the system to stay tuned, i.e. for the reactance to stay zero. 
The manner in which the quarter-wave cavity is approached is determined by the 
scaling of h (cf. 3.96). It is now justified a posteriori by the balance in (3.10) between 
the spring and the leading-order mass term which leads to the following resonance 
condition (to leading order independent of E ,  as i t  should be) : 

This shows that tuned resonators with narrow deep cavities do not operate according 
to the basic Helmholtz model, and never approach the mode of operation with 
uniform cavity pressure, not even in the limit of an infinite ratio between wavelength 
and neck width ! 

( 6 )  As already mentioned earlier, and also in [I], the leading-order added length 
(4/x) In (l/s) of the single resonator or widely spaced resonators is reduced by a factor 
1-P owing to the confinement of the wavefield into a 'channel' of half-width 
As = el;, B = O(1) .  In addition, the added length is again determined together with 
specific error bounds without recourse to any assumptions about the velocity or 
pressure distribution in the neck exit plane. 

( c )  The added-length term proportional to e2-@, which is related to the distortion 
of the velocity profile in the mouth plane due t o  neighbouring resonators, obviously 
becomes more important if the spacing is reduced relative to the slit width, or, in 
other words, if /3 approaches 1.  In the limiting case where the ratio of open to total 
baffle area is required to stay constant as E + O ,  the expansion (3.10) for the impedance 
breaks down. The procedure to follow then is to find a new conformal mapping of 
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the neck and the adjacent intermediate regions onto a half-plane, which implies that 
the neck dimensions a, b and the half-spacing s all be of the same order, namely O(e) .  
This is not carried out, as the result for a neck of zero length can be readily obtained 
from Morse & Ingard (1968, §9.1) ,  where they treat the transmission of plane waves 
through a two-dimensional channel with a finlike obstruction. By matching their 
result for the hydrodynamic near field to the Helmholtz region and to the narrow-cavity 
solution (3 .9) ,  the impedance corresponding to (3.10) is found to be 

&(6 = 0) = i cot R-- 4; In (lq -+- ;) + 1 + 0 ( € 3 ) ,  (3.15) 

na" 
q = tan- 

49"' 
9" = O(1).  

Upon expanding for small ratios a"/9", one obtains for the second term, the mass term, 
in (3.15) 

-- 4is9" In (:q -+- i) %-- ':{ In-+- 29" '('T2 - +- ("3' - +... } (3.16) 
X ~ a "  6 29" 180 29" 

Recalling from (12.23) that for 6 = 0 the parameters k and D take on the values k = 1 
and D = 2, one recovers exactly the term proportional to e2-21 in (3.10). What has 
been gained from the present analysis is the detailed dependence of this term on the 
neck length, which is vital for accurate resonance prediction. It is seen from (12.24) 
that the coefficient (1 + k2)/3D2 changes considerably, from for 6 = 0 to 0.135 for 
long necks. In addition, comparison of (3.10) with the expansion (3.16) shows that 
the next term in the impedance, proportional to e4-'8, is negligible for all practical 
purposes owing to its very small coefficient. Finally the conclusions regarding the 
resonance condition are also fully confirmed for /3 = 1 : from (3.15) it  is clear that I? 
has to be equal to in, a quarter-wavelength, minus an amount of order e to balance 
the mass term. Consequently, when /3 = 1, only the scaling factor ( 1  -/3) In ( l / e )  has 
to be removed from the definition ( 3 . 9 ~ )  of h. 

4. Comparison with experiments, and conclusions 
The results obtained from linear inviscid theory are now compared with measure- 

ments by Smits & Kosten (1951) and by B. Walker (unpublished private commu- 
nication). The first set of data were obtained in an interferometer tube, and 
correspond to the truly two-dimensional geometry of figure 3. Walker's data, on the 
other hand, were obtained with only six resonators of 47 cm span, arranged as in 
figure 3. The far field in his arrangement was therefore three-dimensional. Also, his 
method of determining the resonance frequency consisted of driving the cavity with 
a speaker operating at constant displacement amplitude and searching for the 
maximum pressure amplitude in the cavity. In  order to analyse this case, one has 
to add a driving term to ( 3 . 9 ~ )  : to simplify matters, the whole cavity bottom at Z = I? 
is assumed to oscillate with a velocity amplitude f&,. Equation (3 .9)  is therefore 
modified to 

- cos(8-Z) - cos5 
Po = A ,  A + U b -  

sin sin H ' 
(4.1 a )  

(4.1 b )  
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Case a ( m m )  b(mm) e(mm) H ( m m )  Source 

1 3.64 2 114 
2 3.64 2 114 E::} Smits t Kosten (1951) 
3 3.64 2 114 7.3 
4 12.7 19 
5 12.7 1 

57 413 ) B. Walker (private communication) 
57 413 

TABLE 1. Geometrical data of experiments 

Measured ‘Wide ‘NarToy a I%(‘ = ’1 I = O  
centre spacing ’ spacing aA 

frequency (2.12) (3.14) (4.1) 

Case (Hz) (Hz) (Hz) (Hz) 
- 1 263 26 1 260 

2 320 304 301 
3 625 
4 113 152 133 112 
5 125 220 170 126 

- 
- - - 

TABLE 2. Comparison of measured and calculated resonance frequencies using c,, = 340 m/s 

Using ( 4 . 1 ~ )  instead of (A 15b) in the Appendix and switching off the external 
forcing f+ in (A 13a) leads in a straightforward manner to the amplitude xo in the 
cavity as 

(1-/3) 

With the result (4.2) one can now find the wavenumber k that maximizes the pressure 
amplitude I po  I in the cavity at, say, the bottom wall 5 = A. 

In the following, the geometrical data for the different measurements are given in 
table 1 .  In table 2 the measured resonance frequencies are compared with the 
predictions for widely and narrowly spaced arrays. The comparison with the first 
result (2.12) is thereby based on a semicylindrical cavity of equal volume. In the first 
two cases all predictions, including Smits & Kosten’s, are within the experimental 
error. The third case of the wide shallow cavity is included to illustrate the point being 
made regarding the rigorous long-wavelength limit. For this purpose, the shallow 
cavity can be viewed qualitatively as a deep narrow cavity split down the middle 
and folded up along the baffle. Its depth is thereby equal to 114 mm (the half- 
spacing s), and does indeed approach a quarter-wavelength, which is 136 mm at  the 
measured resonance frequency of 625 Hz. 

In.the last two cases, 4 and 5, finally, the resonance condition (2.12) does not give 
good results because, as noted earlier, the cavities have proportions very different 
from semicylindrical. The condition (3.14) for narrow spacing, on the other hand, is 
expected to predict the resonance accurately This claim is substantiated by the result 
obtainedfrommaximizingIpo(Z = I?) 1 (cf. (4.1)), whichisbasedonthesamelinearized 
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inviscid analysis. The extremely close agreement with measured frequencies is 
thereby somewhat fortuitous, as the speed of sound was not accurately recorded 
during the experiments; notwithstanding this, the ratio of the frequencies for cases 
4 and 5 is predicted to within 1.7 %. These last results demonstrate convincingly 
that the method of resonance-frequency measurement does have a significant 
influence on the result, which is not expected on the basis of the simple Helmholtz 
model with uniform cavity pressure. 

In summary, different types of two-dimensional resonator arrays have been 
analysed, relying entirely on a singular perturbation approach. The results, which 
are exact in the long-wavelength limit, allow the prediction of resonance for widely 
and narrowly spaced arrays, arbitrary neck length and different modes without 
recourse to assumptions on the velocity distribution in the neck. For the case of 
narrowly spaced arrays which entail narrow deep cavities it is shown that even in 
the long-wavelength limit it is not permissible to model the cavity as a volume of 
uniform pressure. In fact i t  is demonstrated that in this limit the cavity depth has 
to approach a quarter-wavelength for resonance. This conclusion is of course also valid 
for a single resonator with a deep narrow cavity. The analysis of this paper finally 
permits one to assess measurement procedures for the response frequency of 
resonators, such as two-microphone methods and cavity excita,tion, for instance. 

The author wishes to thank Dr B. Walker and Dr L. W. Sepmeyer for the ready 
access to their data and the helpful discussions. 

Appendix. Matching procedure for the closely spaced resonator array 
In the following, the cos28 terms are matched first, because the 'quadrupole' 

solutions also contribute constants to the matching of 'source' solutions. To do this, 
quadrupole solutions in the neck region have to be developed. Using results obtained 
in [I], the complex potential 

is considered. In order to obtain the asymptotic expansions on both sides of the neck, 
the asymptotic form (12.18) of the conformal mapping between the physical z-plane 
and w has to be carried to higher order: 

(A 1) F(*)  = wf2 
2 

(A 2) 
i k 1 + k 2  w (1-k2)2 
D w  2 k 24 z - 6  x -- { -+- -+- (;'J+0(145)} ( 1 ~ 1 ~ 0 ) .  

Using (12.17) and (A 2) the asymptotic expansions of the real part of F are obtained 
as 

1 + k2 + k4 + 
3(kD?0)2 ( co;tO0)] 

D2G 1 + k 2  
(cos 28, k2-T - cos 28, 

1 + 1c2 + 1c4 cos 4ei 
3(D?i)2 "(7)) cos 28, D2rf - (1 + 1c2) - cos 28, 

{ cos 28, m+ 1 o (T)} 
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The quantities D and k are defined by (12.13) and (12.14) in [I], where also useful 
approximations are given by (12.23) and (12.24). As noted earlier, the source-type 
solutions also contribute terms proportional to cos28, as evidenced by (3.5b) for the 
intermediate region and by (12.20) for the neck region. For the present purpose, the 
cos 28 term has to be included in the asymptotic expansions (12.22) of the source 
solution in the neck to yield 

1+k2 

l + k 2  

1n?,,+~-cos28,- +...} (?,.,-too), 

1n?~+D-cos28,- + ...} (?,+oo). 

2(D?0)2 

2(D?i)2 

Now the terms proportional to cos 28 can be collected in all relevant solutions of the 
neck and adjacent intermediate regions on the outside (0) and on the inside (i). On 
the outside one obtains the following expansions of the cos [28] terms for small +, and 
large F,: 

(A51 
Similarly one obtains on the inside 

(A 6) 

In the above expressions it is understood that all amplitudes are functions of E .  Now, 
the intermediate matching procedure (Kevorkian & Cole 1981) can be applied by 
rescaling according to 

r* = E-"?, /3 < a < 1, (A 7) 
? = Ea-ly* + = @-Br*. 

Introducing this scaling into (A 5 )  and (A 6) and equating the outside and inside pairs 
of solutions in the overlap domain, one obtains 
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In order to solve the above equations for the quadrupole amplitudes, one has to use 
the leading-order results for the source amplitudes A$'), A, and Ahi), which are derived 
later on to avoid dealing with the source terms twice. As it will turn out, all these 
amplitudes are, up to logarithmic factors In (l/s), of the same order as the incident 
pressure j3i. Therefore, the quadrupole amplitudes are to leading order (independent 
of r* and a!) given by 

A t  this point the matching of the source solutions including the leading-order effect 
of their quadrupole distortions can be performed by noting that, according to (3.8), 
(A 3) and (A 4), the quadrupole solutions contribute the following constants of order 
s2-2fl to be added to the source solutions: 

outside intermediate region (F0 + 0) : $A?), 

(A 11) 
( F o + C O ) :  -- + k2 A$-), 

k2 
outside neck region 

inside neck region (Pi + co ) : - ( 1 + k2)  Ai+), 

inside intermediate region (fi+0) : ;Tii). I 
The expansions of the &independent terms in all regions, including the above 

constants, are summarized below. 

Helmholtz region (radiated plane wave (3.1) only) : 

@o x Ao{i +iP-;P+ ...I 
Outside intermediate region (cf. (3 .5b)  and (3.7)) : 

( P + o ) .  (A 12a) 

Outside neck region (cf. (12.22) and (12.29)): 

(Fo+ CO). (A 13b) 
Inside neck region : 
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Inside intermediate region (cf. (3.5b) and (3.7)): 

Cavity region (cf. (3.9b)): 

po = ~ o ~ l n ( ~ ) ( 1 - 8 ) h 8 0 ( 8 ) ( 1 - ~ ~ ) + i - ~ ~ j  p o ) .  (A m) 
The only necessary comment on the above relations concerns the location at which 

the forcing given by (2.1) is brought in: as it is a wave reflected from the baffle and 
does not converge onto the slits, it is convenient to bring it into the matching 
procedure at the 'interface' between the neck region and the outside intermediate 
region, i.e. in (A 13a). The formal matching of the above four pairs of solutions is 
now straightforward. For the sake of brevity it is omitted, and only the results are 
given below : 
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